
MPAS-Land Ice Model User’s Guide
Version: 3.0

Climate, Ocean, Sea-Ice Modeling Team

Los Alamos National Laboratory

September 18, 2013

Foreword

The Model for Prediction Across Scales-Land Ice (MPAS-Land Ice) is an unstructured-mesh land
ice model (ice sheets or glaciers) capable of using enhanced horizontal resolution in selected regions
of the land ice domain. This allows researchers to perform high-resolution regional simulations at a
lower computational cost, while providing realistic ice flow from the low-resolution regions. Model
domains may be spherical or on Cartesian domains. MPAS-Land-Ice is being designed for large-
scale, hi-resolution simulations of ice sheet dynamics, using a combination of Finite Difference,
Finite Volume, and Finite Element Methods on variable resolution meshes. MPAS-Land-Ice will
initially be released with support for standard test cases used in verifying model performance.
Eventually, support for standard ice sheet configurations will also be included (e.g., stand-alone
Greenland and Antarctica simulations).

Prototype dynamcial cores for MPAS-Land-Ice have shown good agreement with manufactured
solutions and standard test cases, and have been used in land ice evolution experiments aimed at
informing the IPCC AR5 on the potential for future sea-level rise from ice sheets (e.g., Ice2Sea
international assessment project (Shannon et al., 2013; Edwards et al., 2013)). Two dynamical
cores are currently under development for implementation within MPAS-Land-Ice. These include
a 1st-order accurate approximation to the momentum balance equations, a prototype of which has
been described by Perego et al. (2012), and a ”full” Stokes momentum balance, described in Leng
et al. (2012).

MPAS-Land Ice is one component within the MPAS framework of climate models that is devel-
oped in cooperation between Los Alamos National Laboratory (LANL) and the National Center
for Atmospheric Research (NCAR). Functionality that is required by all cores, such as i/o, time
management, block decomposition, etc, is developed collaboratively, and this code is shared across
cores within the same repository. Each core then solves its own differential equations and physical
parameterizations within this framework. This user’s guide reflects the spirit of this collaborative
process, where Part I, “The MPAS Framework”, applies to all cores, and the remaining parts apply
to MPAS-Land Ice.

Here we would normally describe the new features of this version. For the initial release,
we will simply review the major features of the basic MPAS-Land Ice model. We employ a finite-
volume discretization of the ice continuity equation using a C-grid staggering in the horizontal. The
vertical coordinate is sigma. The time-stepping method is Forward Euler (explicit). Ice advection
is performed by first-order upwinding. No tracer advection is available at present. In the initial
release velocity can only be solved using the Shallow Ice Approximation.

A history of past releases of the Land Ice core within the MPAS version numbering scheme is
as follows:

version date description

2.0.0 November 15, 2013 Initial public release of Land Ice core (SIA velocity solver only)

3.0.0 November 18, 2013 Fix bug in SIA slope calculation. Introduction of run-time I/O streams.
Information about MPAS-Land Ice, including the most recent code, user’s guide, and test cases,

1

may be found at http://mpas-dev.github.com. This user’s guide refers to version 3.0.

Contributors to this guide:
Matt Hoffman, Stephen Price
Additional contributors to MPAS Framework sections:
Michael Duda, Douglas Jacobsen

Funding for the development of MPAS-Land Ice was provided by the United States Department of
Energy, Office of Science.

2

http://mpas-dev.github.com

Contents

1 MPAS-Land Ice Quick Start Guide 8

I The MPAS Framework 9

2 Building MPAS 10
2.1 Prequisites . 10
2.2 Compiling I/O Libraries . 10

2.2.1 netCDF . 10
2.2.2 parallel-netCDF . 11
2.2.3 PIO . 11

2.3 Compiling MPAS . 11
2.4 Cleaning . 13
2.5 Graph partitioning with METIS . 13

3 Grid Description 15

4 Configuring Model Input and Output 19
4.1 XML stream configuration files . 19
4.2 Optional stream attributes . 21
4.3 Stream definition examples . 22

4.3.1 Example: a single-precision output stream with one month of data per file . . 22
4.3.2 Example: appending records to existing output files 23
4.3.3 Example: referencing filename intervals to a time other than the start time . 24

5 Visualization 26
5.1 ParaView . 26

II MPAS-Land Ice 29

6 Governing Equations 30
6.1 Momentum Balance . 30
6.2 Time Integration . 31
6.3 Advection . 31

3

7 Model Configuration 32
7.1 Dimensions . 32
7.2 Namelist options . 32

7.2.1 velocity solver . 32
7.2.2 advection . 33
7.2.3 physical parameters . 33
7.2.4 time integration . 33
7.2.5 time management . 34
7.2.6 io . 34
7.2.7 decomposition . 35
7.2.8 debug . 35

7.3 Variable definitions . 36
7.3.1 state . 36
7.3.2 tend . 36
7.3.3 mesh . 37

7.4 Run-time input/output streams . 38
7.4.1 input . 38
7.4.2 output . 38
7.4.3 restart . 39
7.4.4 basicmesh . 40
7.4.5 Other streams . 40

8 Land Ice Visualization 41
8.1 Python . 41

9 Test Cases 42
9.1 Halfar Dome . 42

9.1.1 Provided Files . 42
9.1.2 Results . 43

9.2 EISMINT-1 Test Cases . 45
9.2.1 Provided Files . 45
9.2.2 Results . 45

9.3 Real World Test Cases . 46

10 Global Statistics 47

11 Running MPAS-Land Ice within a coupled climate model 48

12 Troubleshooting 49
12.1 Choice of time step . 49

13 Known Issues 50

4

III Bibliography 51

IV Appendices 53

A Namelist options 54
A.1 config block decomp file prefix . 54
A.2 config calendar type . 54
A.3 config default flowParamA . 54
A.4 config do restart . 55
A.5 config dt . 55
A.6 config dynamic thickness . 55
A.7 config explicit proc decomp . 56
A.8 config flowLawExponent . 56
A.9 config ice density . 56
A.10 config num halos . 56
A.11 config number of blocks . 57
A.12 config ocean density . 57
A.13 config pio num iotasks . 57
A.14 config pio stride . 58
A.15 config print thickness advection info . 58
A.16 config proc decomp file prefix . 58
A.17 config restart timestamp name . 58
A.18 config run duration . 59
A.19 config sea level . 59
A.20 config start time . 59
A.21 config stop time . 60
A.22 config thickness advection . 60
A.23 config time integration . 60
A.24 config tracer advection . 61
A.25 config velocity solver . 61
A.26 config write output on startup . 61
A.27 config year digits . 61

B Variable definitions 63
B.1 mesh . 63

B.1.1 angleEdge . 63
B.1.2 areaCell . 63
B.1.3 areaTriangle . 63
B.1.4 bedTopography . 64
B.1.5 cellTangentPlane . 64
B.1.6 cellsOnCell . 64
B.1.7 cellsOnEdge . 65
B.1.8 cellsOnVertex . 65
B.1.9 coeffs reconstruct . 65
B.1.10 dcEdge . 66
B.1.11 dvEdge . 66
B.1.12 edgeNormalVectors . 66

5

B.1.13 edgeSignOnCell . 66
B.1.14 edgeSignOnVertex . 67
B.1.15 edgesOnCell . 67
B.1.16 edgesOnEdge . 67
B.1.17 edgesOnVertex . 68
B.1.18 indexToCellID . 68
B.1.19 indexToEdgeID . 68
B.1.20 indexToVertexID . 69
B.1.21 kiteAreasOnVertex . 69
B.1.22 latCell . 69
B.1.23 latEdge . 70
B.1.24 latVertex . 70
B.1.25 layerCenterSigma . 70
B.1.26 layerInterfaceSigma . 70
B.1.27 layerThicknessFractions . 71
B.1.28 localVerticalUnitVectors . 71
B.1.29 lonCell . 71
B.1.30 lonEdge . 72
B.1.31 lonVertex . 72
B.1.32 nEdgesOnCell . 72
B.1.33 nEdgesOnEdge . 73
B.1.34 sfcMassBal . 73
B.1.35 verticesOnCell . 73
B.1.36 verticesOnEdge . 73
B.1.37 weightsOnEdge . 74
B.1.38 xCell . 74
B.1.39 xEdge . 74
B.1.40 xVertex . 75
B.1.41 yCell . 75
B.1.42 yEdge . 75
B.1.43 yVertex . 76
B.1.44 zCell . 76
B.1.45 zEdge . 76
B.1.46 zVertex . 77

B.2 state . 77
B.2.1 cellMask . 77
B.2.2 edgeMask . 77
B.2.3 layerThickness . 78
B.2.4 layerThicknessEdge . 78
B.2.5 lowerSurface . 78
B.2.6 normalVelocity . 78
B.2.7 temperature . 79
B.2.8 thickness . 79
B.2.9 uReconstructMeridional . 79
B.2.10 uReconstructX . 80
B.2.11 uReconstructY . 80
B.2.12 uReconstructZ . 80
B.2.13 uReconstructZonal . 81

6

B.2.14 upperSurface . 81
B.2.15 upperSurfaceVertex . 81
B.2.16 vertexMask . 81
B.2.17 xtime . 82

B.3 tend . 82
B.3.1 tend layerThickness . 82
B.3.2 tend temperature . 82

7

Chapter 1

MPAS-Land Ice Quick Start Guide

This chapter provides MPAS-Land Ice users with a quick start description of how to build and
run the model. It is meant merely as a brief overview of the process, while the more detailed
descriptions of each step are provided in later sections.

In general, the build process follows the following steps.

1. Build MPI Layer (OpenMPI, MVAPICH2, etc.)

2. Build serial NetCDF library (v3.6.3, v4.1.3, etc.)

3. Build Parallel-NetCDF library (v1.2.1, v1.3.0, etc.)

4. Build Parallel I/O library (v1.4.1, v1.6.1, etc.)

5. (Optional) Build METIS library and executables (v4.0, v5.0.2, etc.)

6. Checkout MPAS-Land Ice from repository

7. Build Land Ice core

After step 7, an executable should be created called landice model.exe. Once the executable is
built, one can begin the run process as follows:

1. Create run directory.

2. Copy executable to run directory.

3. Copy namelist.input into run directory.

4. (Optional) Copy input and graph files into run directory.

5. Edit namelist.input to have the proper parameters.
If step 4 was skipped, ensure paths to input and graph files are appropriately set.

6. (Optional) Create graph files, using METIS executable (pmetis or gpmetis depending on
version).
A graph file is required for each processor count you want to use.

7. Run MPAS-Land Ice.

8. Visualize output file, and perform analysis.

8

Part I

The MPAS Framework

9

Chapter 2

Building MPAS

2.1 Prequisites

To build MPAS, compatible C and Fortran compilers are required. Additionally, the MPAS software
relies on the PIO parallel I/O library to read and write model fields, and the PIO library requires
the standard netCDF library as well as the parallel-netCDF library from Argonne National Labs.
All libraries must be compiled with the same compilers that will be used to build MPAS. Section
2.2 summarizes the basic procedure of installing the required I/O libraries for MPAS.

In order for the MPAS makefiles to find the PIO, parallel-netCDF, and netCDF include files and
libraries, the environment variables PIO, PNETCDF, and NETCDF should be set to the root installation
directories of the PIO, parallel-netCDF, and netCDF installations, respectively. Newer versions of
the netCDF library use a separate Fortran interface library; the top-level MPAS Makefile attempts
to add -lnetcdff to the linker flags, but some linkers require that -lnetcdff appear before
-lnetcdf, in which case -lnetcdff will need to be manually added just before -lnetcdf in the
specification of LIBS in the top-level Makefile.

An MPI installation such as MPICH or OpenMPI is also required, and there is no option to
build a serial version of the MPAS executables. There is currently no support for shared-memory
parallelism with OpenMP within the MPAS framework.

2.2 Compiling I/O Libraries

NOTE: It’s important to note the MPAS Developers are not responsible for any of the libraries
that are used within MPAS. Support for specific libraries should be taken up with the respective
developer groups.

Although most recent versions of the I/O libraries should work, the most tested versions of
these libraries are: netCDF 4.1.3, parallel-netCDF 1.3.1, and PIO 1.4.1. The netCDF and parallel-
netCDF libraries must be installed before building PIO library.

All commands are presented for csh, and will not work if pasted into another shell. Please
translate them to the appropraite commands in your shell.

2.2.1 netCDF

Version 4.1.3 of the netCDF library may be downloaded from http://www.unidata.ucar.edu/

downloads/netcdf/netcdf-4_1_3/index.jsp. Assuming the gfortran and gcc compilers will be
used, the following shell commands are generally sufficient to install netCDF.

10

http://www.unidata.ucar.edu/downloads/netcdf/netcdf-4_1_3/index.jsp
http://www.unidata.ucar.edu/downloads/netcdf/netcdf-4_1_3/index.jsp

> setenv FC gfortran

> setenv F77 gfortran

> setenv F90 gfortran

> setenv CC gcc

> ./configure --prefix=XXXXX --disable-dap --disable-netcdf-4 --disable-cxx

--disable-shared --enable-fortran

> make all check

> make install

Here, XXXXX should be replaced with the directory that will serve as the root installation direc-
tory for netCDF. Before proceeding to compile PIO the NETCDF PATH environment variable should
be set to the netCDF root installation directory.

Certain compilers require addition flags in the CPPFLAGS environment variable. Please refer
to the netCDF installation instructions for these flags.

2.2.2 parallel-netCDF

Version 1.3.1 of the parallel-netCDF library may be downloaded from https://trac.mcs.anl.

gov/projects/parallel-netcdf/wiki/Download. Assuming the gfortran and gcc compilers will
be used, the following shell commands are generally sufficient to install parallel-netCDF.

> setenv MPIF90 mpif90

> setenv MPIF77 mpif90

> setenv MPICC mpicc

> ./configure --prefix=XXXXX

> make

> make install

Here, XXXXX should be replaced with the directory that will serve as the root installation direc-
tory for parallel-netCDF. Before proceeding to compile PIO the PNETCDF PATH environment variable
should be set to the parallel-netCDF root installation directory.

2.2.3 PIO

Instructions for building PIO can be found at http://www.cesm.ucar.edu/models/pio/. Please
refer to these instructions for building PIO.

After PIO is built, and installed the PIO enviroment variable needs to be defined to point at the
directory PIO is installed into. Older versions of PIO cannot be installed, and the PIO environment
variable needs to be set to the directory where PIO was built instead.

2.3 Compiling MPAS

Before compiling MPAS, the NETCDF, PNETCDF, and PIO environment variables must be
set to the library installation directories as described in the previous section. A CORE

variable also needs to either be defined or passed in during the make process. If CORE

is not specified, the build process will fail.
The MPAS code uses only the ‘make’ utility for compilation. Rather than employing a separate

configuration step before building the code, all information about compilers, compiler flags, etc.,

11

https://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/Download
https://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/Download
http://www.cesm.ucar.edu/models/pio/

is contained in the top-level Makefile; each supported combination of compilers (i.e., a configu-
ration) is included in the Makefile as a separate make target, and the user selects among these
configurations by running make with the name of a build target specified on the command-line,
e.g.,

> make gfortran

to build the code using the GNU Fortran and C compilers. Some of the available targets are listed
in the table below, and additional targets can be added by simply editing the Makefile in the
top-level directory.

Target Fortran compiler C compiler MPI wrappers

xlf xlf90 xlc mpxlf90 / mpcc

pgi pgf90 pgcc mpif90 / mpicc

ifort ifort gcc mpif90 / mpicc

gfortran gfortran gcc mpif90 / mpicc

g95 g95 gcc mpif90 / mpicc

In order to get a more complete and up-to-date list of available tagets, one can use the following
command within the top-level of MPAS. NOTE: This command is known to not work with Mac
OSX.

> make -rpn | sed -n -e ’/^$/ { n ; /^[^]*:/p }’ | sed "s/: *.*$//g"

The MPAS framework supports multiple cores — currently a shallow water model, an ocean
model, a non-hydrostatic atmosphere model, a non-hydrostatic atmosphere initialization core, and
a land ice core — so the build process must be told which core to build. This is done by either
setting the environment variable CORE to the name of the model core to build, or by specifying the
core to be built explicitly on the command-line when running make. For the shallow water core,
for example, one may run either

> setenv CORE sw

> make gfortran

or

> make gfortran CORE=sw

If the CORE environment variable is set and a core is specified on the command-line, the
command-line value takes precedence; if no core is specified, either on the command line or via
the CORE environment variable, the build process will stop with an error message stating such.
Assuming compilation is successful, the model executable, named ${CORE} model (e.g., sw model),
should be created in the top-level MPAS directory.

In order to get a list of available cores, one can simply run the top-level Makefile without
setting the CORE environment variable, or passing the core via the command-line. And example of
the output from this can be seen below.

> make

12

(make error)

make[1]: Entering directory ‘mpas’

Usage: make target CORE=[core] [options]

Example targets:

ifort

gfortran

xlf

pgi

Availabe Cores:

atmosphere

init_atmosphere

landice

ocean

sw

Available Options:

DEBUG=true - builds debug version. Default is optimized version.

USE_PAPI=true - builds version using PAPI for timers. Default is off.

TAU=true - builds version using TAU hooks for profiling. Default is off.

Ensure that NETCDF, PNETCDF, PIO, and PAPI (if USE_PAPI=true) are environment variables

that point to the absolute paths for the libraries.

************ ERROR ************

No CORE specified. Quitting.

************ ERROR ************

make[1]: Leaving directory ‘mpas’

2.4 Cleaning

To remove all files that were created when the model was built, including the model executable
itself, make may be run for the ‘clean’ target:

> make clean

As with compiling, the core to be cleaned is specified by the CORE environment variable, or by
specifying a core explicitly on the command-line with CORE=.

2.5 Graph partitioning with METIS

Before MPAS can be run in parallel, a mesh decomposition file with an appropriate number of
partitions (equal to the number of MPI tasks that will be used) is required in the run directory. A
limited number of mesh decomposition files (graph.info.part.*) are provided with each test case.
In order to create new mesh decomposition files for your desired number of partitions, begin with
the provided graph.info file and partition with METIS software (http://glaros.dtc.umn.edu/
gkhome/views/metis). The serial graph partitioning program, METIS (rather than ParMETIS or

13

http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis

hMETIS) should be sufficient for quickly partitioning any SCVT produced by the grid gen mesh
generator.

After installing METIS, a graph.info file may be partitioned into N partitions by running

> gpmetis graph.info N

The resulting file, graph.info.part.N , can then be copied into the MPAS run directory before
running the model with N MPI tasks.

14

Chapter 3

Grid Description

This chapter provides a brief introduction to the common types of grids used in the MPAS frame-
work.

The MPAS grid system requires the definition of seven elements. These seven elements are
composed of two types of cells, two types of lines, and three types of points. These elements are
depicted in Figure 3.1 and defined in Table 3.1. These elements can be defined on either the plane
or the surface of the sphere. The two types of cells form two meshes, a primal mesh composed of
Voronoi regions and a dual mesh composed of Delaunay triangles. Each corner of a primal mesh
cell is uniquely associated with the “center” of a dual mesh cell and vice versa. So we define the
two mesh as either a primal mesh (composed of cells Pi) or a dual mesh (composed of cells Dv).
The center of any primal mesh cell, Pi, is denoted by xi and the center of any the dual mesh cell,
Dv, is denoted by xv. The boundary of a given primal mesh cell Pi is composed of the set of lines
that connect the xv locations of associated dual mesh cells Dv. Similarly, the boundary of a given
dual mesh cell Dv is composed of the set of lines that connect the xi locations of the associated
primal mesh cells Pi.

As shown in Figure 3.1, a line segment that connects two primal mesh cell centers is uniquely
associated with a line segment that connects two dual mesh cell centers. We assume that these
two line segments cross and the point of intersection is labeled as xe. In addition, we assume that
these two line segments are orthogonal as indicated in Figure 3.1. Each xe is associated with two
distances: de measures the distance between the primal mesh cells sharing xe and le measures the
distance between the dual mesh cells sharing xe.

Since the two line segments crossing at xe are orthogonal, these line segments form a convenient
local coordinate system for each edge. At each xe location a unit vector ne is defined to be parallel
to the line connecting primal mesh cells. A second unit vector te is defined such that te = k× ne.

In addition to these seven element types, we require the definition of sets of elements. In all,
eight different types of sets are required and these are defined and explained in Table 3.2 and Figure
3.2. The notation is always of the form of, for example, i ∈ CE(e), where the LHS indicates the
type of element to be gathered (cells) based on the RHS relation to another type of element (edges).

Table 3.3 provides the names of all elements and all sets of elements as used in the MPAS
framework. Elements appear twice in the table when described in the grid file in more than one
way, e.g. points are described with both cartesian and latitude/longitude coordinates. An “ncdump
-h” of any MPAS grid, output or restart file will contain all variable names shown in second column
of Table 3.3.

15

Table 3.1: Definition of elements used to build the MPAS grid.

Element Type Definition

xi point location of center of primal-mesh cells
xv point location of center of dual-mesh cells
xe point location of edge points where velocity is defined
de line segment distance between neighboring xi locations
le line segment distance between neighboring xv locations
Pi cell a cell on the primal-mesh
Dv cell a cell on the dual-mesh

Table 3.2: Definition of element groups used to reference connections in the MPAS grid.
Examples are provided in Figure 3.2.

Syntax ouptut

e ∈ EC(i) set of edges that define the boundary of Pi.
e ∈ EV (v) set of edges that define the boundary of Dv.
i ∈ CE(e) two primal-mesh cells that share edge e.
i ∈ CV (v) set of primal-mesh cells that form the vertices of dual mesh cell Dv.
v ∈ V E(e) the two dual-mesh cells that share edge e.
v ∈ V I(i) the set of dual-mesh cells that form the vertices of primal-mesh cell Pi.
e ∈ ECP (e) edges of cell pair meeting at edge e.
e ∈ EV C(v, i) edge pair associated with vertex v and mesh cell i.

Table 3.3: Variable names used to describe a MPAS grid.

Element Name Size Comment

xi {x,y,z}Cell nCells cartesian location of xi

xi {lon,lat}Cell nCells longitude and latitude of xi

xv {x,y,z}Vertex nVertices cartesian location of xv

xv {lon,lat}Vertex nVertices longitude and latitude of xv

xe {x,y,z}Edge nEdges cartesian location of xe

xe {lon,lat}Edge nEdges longitude and latitude of xe

de dcEdge nEdges distance between xi locations
le dvEdge nEdges distance between xv locations

e ∈ EC(i) edgesOnCell (nEdgesMax,nCells) edges that define Pi.
e ∈ EV (v) edgesOnVertex (3,nCells) edges that define Dv.
i ∈ CE(e) cellsOnEdge (2,nEdges) primal-mesh cells that share edge e.
i ∈ CV (v) cellsOnVertex (3,nVertices) primal-mesh cells that define Dv.
v ∈ V E(e) verticesOnEdge (2,nEdges) dual-mesh cells that share edge e.
v ∈ V I(i) verticesOnCell (nEdgesMax,nCells) vertices that define Pi.

16

xi

xv

xe

location of edge points

centers of dual-mesh cells

centers of primal-mesh cells

dual-mesh cell,Dv

primal-mesh cell, Pi

line segments
are orthogonal.

de

le

Figure 3.1: Definition of elements used to build the MPAS grid. Also see Table 3.1.

17

P1

e1

e2

e3

e4

e5

e6

P3D2 D1

D3

D4 D5

D6

P2
D7

D8D9

D 10

e7

e8

e9

e10

e11

e ∈ EV (D1) = [e1, e6, e7]

e ∈ EC(P1) = [e1, e2, e3, e4, e5, e6]

i ∈ CE(e1) = [P1, P2]

i ∈ CV (D1) = [P1, P2, P3]

v ∈ V E(e1) = [D1, D2]

e ∈ ECP (e1) = [e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11]

e ∈ ECV (P1, D1) = [e1, e6]

v ∈ V C(P1) = [D1, D2, D3, D4, D4, D5, D6]

Figure 3.2: Definition of element groups used to reference connections in the MPAS grid.
Also see Table 3.2.

18

Chapter 4

Configuring Model Input and Output

The reading and writing of model fields in MPAS is handled by user-configurable streams. A stream
represents a fixed set of model fields, together with dimensions and attributes, that are all written
or read together to or from the same file or set of files. Each MPAS model core may define its own
set of default streams that it typically uses for reading initial conditions, for writing and reading
restart fields, and for writing additional model history fields. Besides these default streams, users
may define new streams to, e.g., write certain diagnostic fields at a higher temporal frequency than
the usual model history fields.

Streams are defined in XML configuration files that are created at build time for each model
core. The name of this XML file is simply ‘streams.’ suffixed with the name of the core. For
example, the streams for the sw (shallow-water) core are defined in a file named ‘streams.sw’. An
XML stream file may further reference other text files that contain lists of the model fields that are
read or written in each of the streams defined in the XML stream file.

Changes to the XML stream configuration file will take effect the next time an MPAS core is
run; there is no need to re-compile after making modifications to the XML files. As described in
the next section, it is therefore possible, e.g., to change the interval at which a stream is written,
the template for the filenames associated with a stream, or the set of fields that are written to a
stream, without the need to re-compile any code.

Two classes of streams exist in MPAS: immutable streams and mutable streams. Immutable
streams are those for which the set of fields that belong to the stream may not be modified at
model run-time; however, it is possible to modify the interval at which the stream is read or
written, the filename template describing the files containing the stream on disk, and several other
parameters of the stream. In contrast, all aspects of mutable streams, including the set of fields
that belong to the stream, may be modified at run-time. The motivation for the creation of two
stream classes is the idea that an MPAS core may not function correctly if certain fields are not
read in upon model start-up or written to restart files, and it is therefore not reasonable for users to
modify this set of required fields at run-time. An MPAS core developer may choose to implement
such streams as immutable streams. Since fields may not be added to an immutable stream at
run-time, new immutable streams may not be defined at run-time, and the only type of new stream
that may be defined at run-time is the mutable stream type.

4.1 XML stream configuration files

The XML stream configuration file for an MPAS core always has a parent XML element named
streams, within which individual streams are defined:

19

<streams>

... one or more stream definitions ...

</streams>

Immutable streams are defined with the immutable stream element, and mutable streams are
defined with the stream element:

<immutable stream name="initial conditions"

type="input"

filename template="init.nc"

input interval="initial only"

/>

<stream name="history"

type="output"

filename template="output.$Y-$M-$D $h.$m.$s.nc"

output interval="6:00:00" />

... model fields belonging to this stream ...

</stream>

As shown in the example stream definitions, above, both classes of stream have the following
required attributes:

• name — A unique name used to refer to the stream.

• type — The type of stream, either "input", "output", "input;output", or "none". A
stream may be both an input and an output stream (i.e., "input;output") if, for example, it
is read once at model start-up to provide initial conditions and thereafter written periodically
to provide model checkpoints. A stream may be defined as neither input nor output (i.e.,
"none") for the purposes of defining a set of fields for inclusion other streams. Note that, for
immutable streams, the type attribute may not be changed at run-time.

• filename template — The template for files that exist or will be created by the stream. The
filename template may include any of the following variables, which are expanded based on
the simulated time at which files are first created.

– $Y — Year

– $M — Month

– $D — Day of the month

– $d — Day of the year

– $h — Hour

20

– $m — Minute

– $s — Second

A filename template may include either a relative or an absolute path, in which case MPAS
will attempt to create any directories in the path that do not exist, subject to filesystem
permissions.

• input interval — For streams that have type "input" or "input;output", the interval,
beginning at the model initial time, at which the stream will be read. Possible values include a
time interval specification in the format "YYYY-MM-DD hh:mm:ss"; the value "initial only",
which specifies that the stream is read only once at the model initial time; or the value "none",
which specifies that the stream is not read during a model run.

• output interval — For streams that have type "output" or "input;output", the inter-
val, beginning at the model initial time, at which the stream will be written. Possible val-
ues include a time interval specification in the format "YYYY-MM-DD hh:mm:ss"; the value
"initial only", which specifies that the stream is written only once at the model initial
time; or the value "none", which specifies that the stream is not written during a model run.

Finally, the set of fields that belong to a mutable stream may be specified with any combination
of the following elements. Note that, for immutable streams, no fields are specified at run-time in
the XML configuration file.

• var — Associates the specified variable with the stream. The variable may be any of those
defined in an MPAS core’s Registry.xml file, but may not include individual constituent arrays
from a var array.

• var array — Associates all constituent variables in a var array, defined in an MPAS core’s
Registry.xml file, with the stream.

• var struct — Associates all variables in a var struct, defined in an MPAS core’s Registry.xml
file, with the stream.

• stream — Associates all explicitly associated fields in the specified stream with the stream;
streams are not recursively included.

• file — Associates all variables listed in the specified text file, with one field per line, with
the stream.

4.2 Optional stream attributes

Besides the required attributes described in the preceding section, several additional, optional
attributes may be added to the definition of a stream.

• filename interval — The interval between the timestamps used in the construction of the
names of files associated with a stream. Possible values include a time interval specification in
the format "YYYY-MM-DD hh:mm:ss"; the value "none", indicating that only one file containing
all times is associated with the stream; the value "input interval" that, for input type
streams, indicates that each time to be read from the stream will come from a unique file;
or the value "output interval" that, for output type streams, indicates that each time to

21

be written to the stream will go to a unique file whose name is based on the timestamp
of the data being written. The default value is "input interval" for input type streams
and "output interval" for output type streams. For streams of type "input;output", the
default filename interval is "input interval" if the input interval is an interval (i.e., not
"initial only"), or "output interval" otherwise. Refer to Section 4.3.1 for an example of
the use of the filename interval attribute.

• reference time — A time that is an integral number of filename intervals from the timestamp
of any file associated with the stream. The default value is the start time of the model
simulation. Refer to Section 4.3.3 for an example of the use of the reference time attribute.

• clobber mode — Specifies how a stream should handle attempts to write to a file that already
exists. Possible values for the mode include:

– "overwrite" — The stream is allowed to overwrite records in existing files and to append
new records to existing files; records not explicitly written to are left untouched.

– "truncate" or "replace files" — The stream is allowed to overwrite existing files,
which are first truncated to remove any existing records; this is equivalent to replacing
any existing files with newly created files of the same name.

– "append" — The stream is only allowed to append new records to existing files; existing
records may not be overwritten.

– "never modify" — The stream is not allowed to modify existing files in any way.

The default clobber mode for streams is "never modify". Refer to Section 4.3.2 for an
example of the use of the clobber mode attribute.

• precision — The precision with which real-valued fields will be written or read in a stream.
Possible values include "single" for 4-byte real values, "double" for 8-byte real values, or
"native", which specifies that real-valued fields will be written or read in whatever precision
the MPAS core was compiled. The default value is "native". Refer to Section 4.3.1 for an
example of the use of the precision attribute.

• packages — A list of packages attached to the stream. A stream will be active (i.e., read
or written) only if at least one of the packages attached to it is active, or if no packages
at all are attached. Package names are provided as a semi-colon-separated list. Note that
packages may only be defined in an MPAS core’s Registry.xml file at build time. By default,
no packages are attached to a stream.

4.3 Stream definition examples

This section provides several example streams that make use of the optional stream attributes
described in Section 4.2. All examples are of output streams, since it is more likely that a user will
need to write additional fields than to read additional fields, which a model would need to be aware
of; however, the concepts that are illustrated here translate directly to input streams as well.

4.3.1 Example: a single-precision output stream with one month of data per
file

In this example, the optional attribute specification filename interval="01-00 00:00:00" is
added to force a new output file to be created for the stream every month. Note that the general

22

format for time interval specifications is YYYY-MM-DD hh:mm:ss, where any leading terms can be
omitted; in this case, the year part of the interval is omitted. To reduce the file size, the specification
precision="single" is also added to force real-valued fields to be written as 4-byte floating-point
values, rather than the default of 8 bytes.

<stream name="diagnostics"

type="output"

filename template="diagnostics.$Y-$M.nc"

filename interval="01-00 00:00:00"

precision="single"

output interval="6:00:00" />

<var name="u10"/>

<var name="v10"/>

<var name="t2"/>

<var name="q2"/>

</stream>

The only fields that will be written to this stream are the hypothetical 10-m diagnosed wind
components, the 2-m temperature, and the 2-m specific humidity variables. Also, note that the
filename template only includes the year and month from the model valid time; this can be prob-
lematic when the simulation starts in the middle of a month, and a solution for this problem is
illustrated in the example of Section 4.3.3.

4.3.2 Example: appending records to existing output files

By default, streams will never modify existing files whose filenames match the name of a file that
would otherwise be written during the course of a simulation. However, when restarting a simulation
that is expected to add more records to existing output files, it can be useful to instruct the MPAS
I/O system to append these records, thereby modifying existing files. This may be accomplished
with the clobber mode attribute.

<stream name="diagnostics"

type="output"

filename template="diagnostics.$Y-$M.nc"

filename interval="01-00 00:00:00"

precision="single"

clobber mode="append"

output interval="6:00:00" />

<var name="u10"/>

<var name="v10"/>

<var name="t2"/>

<var name="q2"/>

</stream>

23

In general, if MPAS were to attempt to write a record at a time that already existed in an output
file, a clobber mode of ‘append’ would not permit the write to take place, since this would modify
existing data; in ‘append’ mode, only new records may be added. However, due to a peculiarity in
the implementation of the ‘append’ clobber mode, it may be possible for an output file to contain
duplicate times. This can happen when the first record that is appended to an existing file has
a timestamp not matching any in the file, after which, any record that is written — regardless
of whether its timestamp matches one already in the file — will be appended to the end of the
file. This situation may arise, for example, when restarting a model simulation with a shorter
output interval than was used in the original model simulation with an MPAS core that does
not write the first output time for restart runs.

4.3.3 Example: referencing filename intervals to a time other than the start
time

The example stream of the previous sections creates a new file each month during the simulation,
and the filenames contain only the year and month of the timestamp when the file was created.
If a simulation begins at 00 UTC on the first day of a month, then each file in the diagnostic
stream will contain only output times that fall within the month in the filename. However, if a
simulation were to begin in the middle of a month — for example, the month of June, 2014 —
the first diagnostics output file would have a filename of ‘diagnostics.2014-06.nc’, but rather than
containing only output fields valid in June, it would contain all fields written between the middle
of June and the middle of July, at which point one month of simulation would have elapsed, and a
new output file, ‘diagnostics.2014-07.nc’, would be created.

In order to ensure that the file ‘diagnostics.2014-06.nc’ contained only data from June 2014, the
reference time attribute may be added such that the day, hour, minute, and second in the date
and time represent the first day of the month at 00 UTC. In this example, the year and month of
the reference time are not important, since the purpose of the reference time here is to describe to
MPAS that the monthly filename interval begins (i.e., is referenced to) the first day of the month.

<stream name="diagnostics"

type="output"

filename template="diagnostics.$Y-$M.nc"

filename interval="01-00 00:00:00"

reference time="2014-01-01 00:00:00"

precision="single"

clobber mode="append"

output interval="6:00:00" />

<var name="u10"/>

<var name="v10"/>

<var name="t2"/>

<var name="q2"/>

</stream>

24

In general, the components of a timestamp, YYYY-MM-DD hh:mm:ss, that are less significant than
(i.e., to the right of) those contained in a filename template are important in a reference time. For
example, with a filename template that contained only the year, the month component of the
reference time would become important to identify the month of the year on which the yearly
basis for filenames would begin.

25

Chapter 5

Visualization

This chapter discusses visualization tools that may be used by all cores. For instructions on
additional visualization tools for this core, see Chapter 8.

5.1 ParaView

ParaView may be used to visualize MPAS initialization, output, and restart files. It includes a
reader that was specifically designed to read MPAS NetCDF files, including Cartesian and spherical
domains. At this time, only cell-centered quantities may be plotted with ParaView. Variables
located at edges and vertices must be interpolated to cell centers for visualization.

ParaView is freely available for download at http://www.paraview.org. Binary installations
are available for Windows, Mac, and Linux, as well as source code files and tutorials. From the
ParaView website:

ParaView is an open-source, multi-platform data analysis and visualization appli-
cation. ParaView users can quickly build visualizations to analyze their data using
qualitative and quantitative techniques. The data exploration can be done interactively
in 3D or programmatically using ParaView’s batch processing capabilities. ParaView
was developed to analyze extremely large datasets using distributed memory computing
resources. It can be run on supercomputers to analyze datasets of terascale as well as
on laptops for smaller data.

To visualize an MPAS cell-centered variable in ParaView, open the file and choose MPAS NetCDF

(Unstructured) as the file format. In the lower left Object Inspector panel, choose your variables
of interest (Figure 5.1). For large data sets, loading fewer variables will result in less wait time.
Options are available for latitude-longitude projections, vertical level, etc. Click the ’Apply’ button
to load the data set. In the toolbars at the top, choose the variable to plot from the pull-down
menu, and ’Surface’ for the type of visualization. The color bar button displays a color bar, and
the color scale editor button allows the user to manually change the color bar type and extents.
The Filters menu provides computational tools for interactive data manipulation. Movies, in avi
format or as individual frames, may be conveniently created with the Save Animation tool in the
File menu.

Paraview may be used to view the grid from any MPAS NetCDF file by choosing Wireframe

or Suface With Edges from the visualization-type pull-down menu (Figure 5.2). This produces a
view of the Delaunay triangulation, which is the dual mesh to the primal Voronoi cell grid (Figure

26

http://www.paraview.org

Figure 5.1: Example of ParaView to view an MPAS NetCDF file.

3.1). Paraview plots all variables by interpolating colors between each corner of the Delaunay
triangles. These corners are the cell-center locations of the primal grid.

27

Figure 5.2: Example of visualizing the dual mesh from an MPAS NetCDF file.

28

Part II

MPAS-Land Ice

29

Chapter 6

Governing Equations

Advection is performed on a C-grid, with scalar quantities (thickness, temperature, age, etc.) on
the Voronoi cell centers and velocities and fluxes centered at Voronoi cell edges. MPAS-Land
Ice uses SI units everywhere, including input and output. One exception is the ability (but not
the requirement) to specify the model time step in years (but which is then converted to seconds
internally).

6.1 Momentum Balance

Currently within MPAS-Land Ice, the momentum balance for ice is approximated with the Shallow
Ice Approximation (SIA) (Hutter, 1983), which is solved explicitly. In terms of balancing the
gravitational body force, the SIA neglects all but the 0th-order, vertical shear-stress gradients.
The preferred numerical approach for implementing the SIA in ice sheet models is not to solve for
the velocity directly but to instead formulate a parabolic PDE describing the thickness evolution,
with velocities implicit in the formulation. However, for higher-order treatments of the momentum
balance, it is necessary to solve the velocity and thickness evolution steps separately. Therefore, to
allow for the eventual incorporation of higher-order velocity solvers in MPAS Land Ice, the current
design explicitly calculates velocities from the SIA.

Within a column, at any point in the model domain in map view, the depth-dependent SIA
velocity can be solved for as:

u(z) = −1

2
A(ρg)n|∇s|n−1∇s

[
Hn+1 − (h− z)n+1

]
(6.1)

where u(z) is the horizontal velocity vector, A is the flow rate factor (primarily a function of ice
temperature), n is the Glen flow law exponent (typically taken as 3), ρ is the density of ice, g is
acceleration due to gravity, s is the ice surface elevation, H is ice thickness, and z is the vertical
coordinate. Velocities are (nonlinearly) proportional to both the ice thickness and the ice surface
slope.

Velocities and fluxes are calculated on the midpoint of Voronoi cell edges. The normal com-
ponent of surface slope is calculated on cell edges using surface elevation at adjacent cell centers.
The tangential component of surface slope is calculated on cell edges using surface elevation at
adjacent vertices. The surface elevation at vertices is calculated from the values at adjacent cell
centers using barycentric interpolation. Ice thickness on edges is calculated as the average of the
adjacent cell center values (2nd-order approximation).

30

6.2 Time Integration

Currently, MPAS Land Ice only supports Forward Euler time integration.

6.3 Advection

Currently, MPAS Land Ice only supports advection of thickness and only using First-Order Up-
winding. In 1D, first-order upwinding of ice thickness using a Forward Euler time step is described
by:

Hn+1
i −Hn

i

∆t
+ u

Hn
i −Hn

i−1

∆x
= 0 for u > 0 (6.2)

Hn+1
i −Hn

i

∆t
+ u

Hn
i+1 −Hn

i

∆x
= 0 for u < 0 (6.3)

where ∆x represents the horizontal grid spacing along flow, subscripts designate the spatial
dimension, and superscripts designate the time dimension.

(See, e.g. http://en.wikipedia.org/wiki/Upwind_scheme)
To allow the eventual inclusion of tracer advection, thickness is advected level-by-level, rather

than the cheaper operation of advecting the total column thickness.

31

http://en.wikipedia.org/wiki/Upwind_scheme

Chapter 7

Model Configuration

This chapter describes the configuration of the Land Ice core. The chapter covers the dimensions
used in the model, the Namelist options which are used to provide run-time configurability of model
options, the variables used in the model, and the usage of run-time I/O streams.

7.1 Dimensions

Name Units Description

nCells unitless The number of polygons in the primary grid.
nEdges unitless The number of edge midpoints in either the primary or dual grid.
maxEdges unitless The largest number of edges any polygon within the grid has.
maxEdges2 unitless Two times the largest number of edges any polygon within the grid

has.
nVertices unitless The total number of cells in the dual grid. Also the number of

corners in the primary grid.
TWO unitless The number two as a dimension.
R3 unitless The number three as a dimension.
vertexDegree unitless The number of cells or edges touching each vertex.
nVertLevels unitless The number of levels in the vertical direction. All vertical levels

share the same horizontal locations.
nVertLevelsP1 unitless The number of interfaces in the vertical direction.

7.2 Namelist options

Embedded links point to more detailed namelist information in the appendix.

7.2.1 velocity solver

The velocity solver namelist record controls which velocity solver is used and options associated
with velocity solvers.

32

Name Description

config velocity solver Selection of the method for solving ice velocity.

7.2.2 advection

The advection namelist record controls options assocated with advection of thickness and tracers.
Tracer advection is not currently supported.

Name Description

config thickness advection Selection of the method for advecting thickness.
config tracer advection Selection of the method for advecting tracers.

7.2.3 physical parameters

The physical parameters namelist record sets scalar physical parameters and constants within the
land ice model.

Name Description

config ice density ice density to use
config ocean density ocean density to use for calculating floatation
config sea level sea level to use for calculating floatation
config default flowParamA Defines the default value of the flow law parameter A to be used if

it is not being calculated from ice temperature. Defaults to the SI
representation of 1.0e-16 yr −1 Pa −3 .

config flowLawExponent Defines the value of the Glen flow law exponent, n.
config dynamic thickness Defines the ice thickness below which dynamics are not calculated.

7.2.4 time integration

The time integration namelist record controls parameters that pertain to all time-stepping methods.
At present, Forward Euler is the only time integration method implemented.

Name Description

config dt Length of model time step defined as a time interval.
config time integration Time integration method.

33

7.2.5 time management

General time management is handled by the time management namelist record. Included options
handle time-related parts of MPAS, such as the calendar type and if the simulation is a restart or
not.

Users should use this record to specify the beginning time of the simulation, and either the
duration or the end of the simulation. Only the end or the duration need to be specified as the
other is derived within MPAS from the beginning time and other specified one.

If both the run duration and stop time are specified, run duration is used in place of stop time.

Name Description

config do restart Determines if the initial conditions should be read from a restart
file, or an input file. To perform a restart, simply set this to true
in the namelist.input file and modify the start time to be the time
you want restart from. A restart will read the grid information
from the input field, and the restart state from the restart file. It
will perform a run normally, except velocity will not be solved on
a restart.

config restart timestamp name Path to the filename for restart timestamps to be read and written
from.

config start time Timestamp describing the initial time of the simulation. If it is set
to ’file’, the initial time is read from restart timestamp

config stop time Timestamp describing the final time of the simulation. If it is
set to ’none’ the final time is determined from config start time
and config run duration. If config run duration is also specified, it
takes precedence over config stop time. Set config stop time to be
equal to config start time (and config run duration to ’none’) to
perform a diagnostic solve only.

config run duration Timestamp describing the length of the simulation. If it is set
to ’none’ the duration is determined from config start time and
config stop time. config run duration overrides inconsistent val-
ues of config stop time. If a time value is specified for con-
fig run duration, it must be greater than 0.

config calendar type Selection of the type of calendar that should be used in the simu-
lation.

7.2.6 io

The io namelist record provides options for modifications to the I/O system of MPAS. These include
frequency, file name, and parallelization options.

34

Name Description

config write output on startu-p Logical flag determining if an output file should be written prior
to the first time step.

config pio num iotasks Integer specifying how many IO tasks should be used within the
PIO library. A value of 0 causes all MPI tasks to also be IO tasks.
IO tasks are required to write contiguous blocks of data to a file.

config pio stride Integer specifying the stride of each IO task.
config year digits Integer specifying the number of digits used to represent the year

in time strings.

7.2.7 decomposition

MPAS handles decomposing all variables into computational blocks. The decomposition used needs
to be specified at run time and is computed by an external tool (e.g. metis). Additionally, MPAS
supports multiple computational blocks per MPI process, and the user may specify an additional
decomposition file which can specify the assignment of blocks to MPI processes. Run-time param-
eters that control the run-time decomposition used are specified within the decomposition namelist
record.

Name Description

config num halos Determines the number of halo cells extending from a blocks owned
cells (Called the 0-Halo). The default of 3 is the minimum that can
be used with monotonic advection.

config block decomp file prefix Defines the prefix for the block decomposition file. Can include a
path. The number of blocks is appended to the end of the prefix
at run-time.

config number of blocks Determines the number of blocks a simulation should be run with.
If it is set to 0, the number of blocks is the same as the number of
MPI tasks at run-time.

config explicit proc decomp Determines if an explicit processor decomposition should be used.
This is only useful if multiple blocks per processor are used.

config proc decomp file prefix Defines the prefix for the processor decomposition file. This file is
only read if config explicit proc decomp is .true. The number of
processors is appended to the end of the prefix at run-time.

7.2.8 debug

At run-time a user can enable debugging features within MPAS-Land Ice. Currently the only
debug option is to print more detailed information about thickness advection. Potential future
debug options would be to include disabling of any tendencies to help determine why an issue
might be happening; various checks on certain fields; and the ability to prescribe both a thickness
and velocity field at run-time which are constant throughout a simulation. All options that control
these debugging features are specified within the debug namelist record.

35

Name Description

config print thickness advectio-
n info

Prints additional information about thickness advection.

7.3 Variable definitions

Embedded links point to more detailed variable information in the appendix.

7.3.1 state

Name Description
xtime model time, with format ’YYYY-MM-DD HH:MM:SS’
thickness ice thickness
layerThickness layer thickness
temperature ice temperature
lowerSurface elevation at bottom of ice
upperSurface elevation at top of ice
layerThicknessEdge layer thickness on cell edges
upperSurfaceVertex elevation at top of ice on vertices (currently only needed by shallow

ice solver)
cellMask bitmask indicating various properties about the ice sheet on

cells. cellMask only needs to be a restart field if con-
fig allow additional advance = false (to keep the mask of initial
ice extent)

edgeMask bitmask indicating various properties about the ice sheet on edges.
vertexMask bitmask indicating various properties about the ice sheet on ver-

tices.
normalVelocity horizonal velocity, normal component to an edge
uReconstructX x-component of velocity reconstructed on cell centers
uReconstructY y-component of velocity reconstructed on cell centers
uReconstructZ z-component of velocity reconstructed on cell centers
uReconstructZonal zonal velocity reconstructed on cell centers
uReconstructMeridional meridional velocity reconstructed on cell centers

7.3.2 tend

Name Description
tend layerThickness time tendency of layer thickness
tend temperature time tendency of ice temperature

36

7.3.3 mesh

Name Description
latCell Latitude location of cell centers in radians.
lonCell Longitude location of cell centers in radians.
xCell X Coordinate in cartesian space of cell centers.
yCell Y Coordinate in cartesian space of cell centers.
zCell Z Coordinate in cartesian space of cell centers.
indexToCellID List of global cell IDs.
latEdge Latitude location of edge midpoints in radians.
lonEdge Longitude location of edge midpoints in radians.
xEdge X Coordinate in cartesian space of edge midpoints.
yEdge Y Coordinate in cartesian space of edge midpoints.
zEdge Z Coordinate in cartesian space of edge midpoints.
indexToEdgeID List of global edge IDs.
latVertex Latitude location of vertices in radians.
lonVertex Longitude location of vertices in radians.
xVertex X Coordinate in cartesian space of vertices.
yVertex Y Coordinate in cartesian space of vertices.
zVertex Z Coordinate in cartesian space of vertices.
indexToVertexID List of global vertex IDs.
cellsOnEdge List of cells that straddle each edge.
nEdgesOnCell Number of edges that border each cell.
nEdgesOnEdge Number of edges that surround each of the cells that straddle each

edge. These edges are used to reconstruct the tangential velocities.
edgesOnCell List of edges that border each cell.
edgesOnEdge List of edges that border each of the cells that straddle each edge.
weightsOnEdge Reconstruction weights associated with each of the edgesOnEdge.
dvEdge Length of each edge, computed as the distance between ver-

ticesOnEdge.
dcEdge Length of each edge, computed as the distance between cell-

sOnEdge.
angleEdge Angle the edge normal makes with local eastward direction.
areaCell Area of each cell in the primary grid.
areaTriangle Area of each cell (triangle) in the dual grid.
edgeNormalVectors Normal vector defined at an edge.
localVerticalUnitVectors Unit surface normal vectors defined at cell centers.
cellTangentPlane The two vectors that define a tangent plane at a cell center.
cellsOnCell List of cells that neighbor each cell.
verticesOnCell List of vertices that border each cell.
verticesOnEdge List of vertices that straddle each edge.
edgesOnVertex List of edges that share a vertex as an endpoint.
cellsOnVertex List of cells that share a vertex.
kiteAreasOnVertex Area of the portions of each dual cell that are part of each cellsOn-

Vertex.
coeffs reconstruct Coefficients to reconstruct velocity vectors at cells centers.
edgeSignOnCell Sign of edge contributions to a cell for each edge on cell. Used for

bit-reproducible loops. Represents directionality of vector connect-
ing cells.

37

Name Description (Continued)
edgeSignOnVertex Sign of edge contributions to a vertex for each edge on vertex.

Used for bit-reproducible loops. Represents directionality of vector
connecting vertices.

layerThicknessFractions Fractional thickness of each sigma layer
layerCenterSigma Sigma (fractional) level at center of each layer
layerInterfaceSigma Sigma (fractional) level at interface between each layer (including

top and bottom)
bedTopography Elevation of ice sheet bed. Once isostasy is added to the model,

this should become a state variable.
sfcMassBal Surface mass balance

7.4 Run-time input/output streams

Chapter 4 provides a detailed overview of the implementation of run-time input/output streams in
MPAS. Within the Land Ice core, the following streams are defined at build time:

7.4.1 input

This is an immutable stream defining the fields required for input. It is only read at the initial time.
Input files may have other fields in them, but only the fields specified in this stream definition are
actually read. Default name is landice grid.nc.

The input stream consists of the following members:

• stream name=”basicmesh”

• var array name=”tracers”

• var name=”thickness”

• var name=”normalVelocity”

• var name=”bedTopography”

• var name=”sfcMassBal”

7.4.2 output

This is a mutable stream defining the fields that will be output. Because it is mutable, the list of
fields for output may be modified at run time by editing the streams.landice file. Default name is
output.nc. Default clobber mode is replace files, which will overwrite existing output.

The output stream consists of the following members by default:

• stream name=”basicmesh”

• var array name=”tracers”

• var name=”xtime”

• var name=”thickness”

38

• var name=”layerThickness”

• var name=”lowerSurface”

• var name=”upperSurface”

• var name=”cellMask”

• var name=”edgeMask”

• var name=”vertexMask”

• var name=”normalVelocity”

• var name=”uReconstructX”

• var name=”uReconstructY”

• var name=”uReconstructZ”

• var name=”uReconstructZonal”

• var name=”uReconstructMeridional”

7.4.3 restart

This is an immutable stream defining the fields required for restart. It is both an input and output
stream. The model writes restart files with a single time level in them periodically. If a restart from
one of these checkpoints is desired, set config do restart to .true. and set config start time

to file in namelist.landice. The model will take the start time from the value in the text file
specified by config restart timestamp name (default name is “restart timestamp”), and use the
associated .nc file to restart the model from that checkpoint.

Default name is restart.$Y-$M-$D $h.$m.$s.nc with a new file for each checkpoint. Default
clobber mode is replace files, which will overwrite existing output.

The user does not need to keep track of what fields are required for restart, but for reference
they are:

• stream name=”basicmesh”

• var array name=”tracers”

• var name=”xtime”

• var name=”thickness”

• var name=”cellMask”

• var name=”normalVelocity”

• var name=”bedTopography”

• var name=”sfcMassBal”

39

7.4.4 basicmesh

This is an immutable stream that specifies the list of fields that make up the MPAS mesh speci-
fication. It is provided as a convenience for including mesh fields in other streams without having
to list them all explicitly.

7.4.5 Other streams

As described in Chapter 4, additional streams may be added by the user at run-time. One common
example would be a “forcing” stream that gets read at each time level while the model runs. This
can be accomplished by creating an input stream with input interval set to a time interval. If
the model does not find the current time in the forcing file, it will read the latest value before the
current time instead (piecewise constant forcing).

40

Chapter 8

Land Ice Visualization

This chapter discusses visualization tools that are specific to the Land Ice core. For instructions
on visualization tools that may be used by all cores, such as Paraview, see Chapter 5.

8.1 Python

Python visualization scripts are available for the dome test case, and general python visualization
tools are in development. In order to use these scripts, the following python modules are required:

• matplotlib, see http://matplotlib.org

• numpy, see http://www.numpy.org

• pylab, see www.scipy.org

• netCDF4, see http://code.google.com/p/netcdf4-python

Most package managers (including MacPorts) have packages for these python modules. Another
convenient way to install all these libraries at once is to purchase the Enthought Python Distribution
(EPD), available at https://www.enthought.com/products/epd. Many institutions have Python-
EPD installed on their compute clusters.

41

http://matplotlib.org
http://www.numpy.org
www.scipy.org
http://code.google.com/p/netcdf4-python
https://www.enthought.com/products/epd

Chapter 9

Test Cases

Eventually test cases will be available for download. Currently they are only part of the Develop-
ment code for MPAS-Land Ice.

9.1 Halfar Dome

This test case describes the time evolution of a dome of ice as described by Halfar (1983). This
test provide an analytic solution for a flat-bedded SIA problem.

∂H

∂t
= ∇ · (ΓHn+2|∇H|n−1∇H) (9.1)

where n is the exponent in the Glen flow law, commonly taken as 3, and Γ is a positive constant:

Γ =
2

n+ 2
A(ρg)n (9.2)

For n = 3, this reduces to:

H(t, r) = H0

(
t0
t

) 1
9

1−
((

t0
t

) 1
18 r

R0

) 4
3


3
7

(9.3)

where

t0 =
1

18Γ

(
7

4

)3 R4
0

H7
0

(9.4)

and H0, R0 are the central height of the dome and its radius at time t = t0.
For more details see http://www.projects.science.uu.nl/iceclimate/karthaus/2009/more/

lecturenotes/EdBueler.pdf, Bueler et al. (2005), Halfar (1983).

9.1.1 Provided Files

Our implementation of the Halfar dome has an initial radius of R0 = 21.2 km and an initial thickness
of H = 707.1 m. These values can be changed by editing setup dome initial conditions.py.

• README:
Information about the test case.

42

http://www.projects.science.uu.nl/iceclimate/karthaus/2009/more/lecturenotes/EdBueler.pdf
http://www.projects.science.uu.nl/iceclimate/karthaus/2009/more/lecturenotes/EdBueler.pdf

• namelist.landice:
This file is used for actually running the dome test case in the MPAS land ice core. It may
not include all options available to the model. See the namelist.landice.defaults file in the
MPAS root directory for a list of all options available. They are also documented in Section
7.2.

• streams.landice:
This file is used for specifying file input/output settings for the model.

• halfar.py:
This is the script to compare model results to the analytic solution.

• visualize dome.py:
This python script provides some general visualization of the model output. It can be used
in addition to halfar.py for additional visualization.

• namelist.input.periodic hex:
This file is used for running the grid generation tool periodic hex to create a grid for the
test case. It should be renamed to namelist.config when executing periodic hex.
periodic hex will be used to generate grid.nc (which can be used to create
landice grid.nc) and graph.info.part.* which can be used for running the model
on more than one processor.

• setup dome initial conditions.py:
This python script generates the dome initial condition after an empty landice grid.nc file
exists. If you downloaded a tar archive, you do not need to do this. However, if you want to
modify the IC for some reason, you can edit and run this script.

9.1.2 Results

As the dome of ice evolves, its margin advances and its thickness decreases (there is no surface mass
balance to add new mass). The script halfar.py will plot the modeled and analytic thickness at a
specified time (Figure 9.1), as well as report model error statistics. Invoke halfar.py --help for
details of its usage.

43

Figure 9.1: Halfar test case results after 200 years of dome evolution. This figure is gener-
ated by halfar.py.

44

9.2 EISMINT-1 Test Cases

This test case is from the European Ice Sheet Modelling INiTiative intercomparison experiments.
These experiments are described at http://homepages.vub.ac.be/~phuybrec/eismint.html and
in Huybrechts et al. (1996).

Currently only the Moving Margin 1 Test Case from EISMINT-1 is included.

9.2.1 Provided Files

• namelist.landice:
This file is used for actually running the dome test case in the MPAS land ice core. It may
not include all options available to the model. See the namelist.landice.defaults file in the
MPAS root directory for a list of all options available. They are also documented in Section
7.2.

• streams.landice:
This file is used for specifying file input/output settings for the model.

• check output eismint-mm1.py
This script can be used to compare model output to results from the EISMINT intercompar-
ison.

• namelist.input.periodic hex
This file is used for running the grid generation tool periodic hex to create a grid for the
test case. It needs to be renamed to ’namelist.input’ to run periodic hex) if mesh needs to be
generated. If you downloaded a tar archive of this test case, you do not need to create the
mesh and can ignore this file.

• setup initial conditions EISMINT1-MovingMargin-1.py
This file can be used to setup the initial conditions for the test case. If you downloaded a tar
archive, you do not need to do this. However, if you want to modify the IC for some reason,
you can edit and run this script.

9.2.2 Results

As the initial ice sheet evolves, its shape eventually reaches a steady-state with the imposed surface
mass balance. The script check output eismint-mm1.py will plot the modeled thickness at a
specified time, as well as compare the model results to the results from the original EISMINT
intercomparison. Invoke check output eismint-mm1.py --help for details of its usage. The script
will compare the maximum ice thickness at the final time of the model output to the values reported
from the models participating in the EISMINT-1 intercomparison. You should see something similar
to this:

====================================

Max modeled thickness (m) = 2974.79474126

EISMINT models ice thickness at divide (m):

3d models (10 of them): 2978.0 +/- 19.3

2d models (3 of them): 2982.2 +/- 26.4

====================================

45

http://homepages.vub.ac.be/~phuybrec/eismint.html

9.3 Real World Test Cases

Eventually grids for real-world Greenland and Antarctica will be provided at varying resolutions.

46

Chapter 10

Global Statistics

Eventually global statistics will be calculated within MPAS Land Ice.

47

Chapter 11

Running MPAS-Land Ice within a
coupled climate model

Eventually MPAS-Land Ice will be coupled within global climate models.

48

Chapter 12

Troubleshooting

12.1 Choice of time step

Symptoms: “Error in calculating thickness tendency (possibly CFL violation)” appears in log.0000.err
file.

Possible cause: Time step is too long.

Remedy: Shorten time step.

Discussion: The time step must be short enough that the CFL criterion is not violated. Eventually
an adaptive time integrator will be added to MPAS-Land Ice.

49

Chapter 13

Known Issues

• The barycentric interpolation used to calculate surface elevation at vertices gives garbage
values for vertices associated with obtuse triangles on the dual mesh. Therefore, the model
will only work properly for meshes with no obtuse triangles. Currently there is no error
message when this occurs, so users must be aware of this constraint. Future work will improve
the barycentric interpolation method to work for obtuse triangles.

• Paraview plots periodic fields in a messy way with lines connecting the periodic cells across
the domain.

• Paraview gives the following fatal error with some Land Ice output files: ”NetCDF: Start+count
exceeds dimension bound”.

• Paraview will not recognize fields without a vertical dimension (e.g. thickness will not be
recognized) in versions earlier than 4.1.

50

Part III

Bibliography

51

Bibliography

Bueler, E., C. S. Lingle, J. a. Kallen-Brown, D. N. Covey, and L. N. Bowman, 2005: Exact
solutions and verification of numerical models for isothermal ice sheets. Journal of Glaciology ,
51, 291–306, doi:10.3189/172756505781829449.
URL http://openurl.ingenta.com/content/xref?genre=article&issn=

0022-1430&volume=51&issue=173&spage=291

Edwards, T. L., X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoff-
man, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz., 2013: Effect
of uncertainty in surface mass balance elevation feedback on projections of the future sea level
contribution of the Greenland ice sheet - Part 2: Projections. The Cryosphere Discussions, 7,
675–708.

Halfar, P., 1983: On the Dynamics of the Ice Sheets 2. Journal of Geophysical Research, 88,
6043–6051.

Hutter, K., 1983: Theoretical glaciology; material science of ice and the mechanics of glaciers and
ice sheets. Reidel Publishing Co., Terra Scientific Publishing Co., Tokyo.

Huybrechts, P., T. Payne, and T. E. I. Group, 1996: The EISMINT benchmarks for testing ice-sheet
models. Annals of Glaciology , 23, 1–12.

Leng, W., L. Ju, M. Gunzburger, S. Price, and T. Ringler, 2012: A parallel high-order accurate finite
element nonlinear Stokes ice sheet model and benchmark experiments. Journal of Geophysical
Research, 117, F01001, doi:10.1029/2011JF001962.

Perego, M., M. Gunzburger, and J. Burkardt, 2012: Parallel finite-element implementation for
higher-order ice-sheet models. Journal of Glaciology , 58, 76–88, doi:10.3189/2012JoG11J063.
URL http://www.igsoc.org/journal/current/207/t11J063.pdf

Shannon, S. R., A. J. Payne, I. D. Bartholomew, M. R. V. D. Broeke, T. L. Edwards, A. J. Sole,
R. S. W. V. D. Wal, and T. Zwinger, 2013: Enhanced basal lubrication and the contribution of
the Greenland ice sheet to future sea-level rise. Proceedings of the National Academy of Sciences
of the United States of America, 1–6, doi:10.1073/pnas.1212647110.

52

http://openurl.ingenta.com/content/xref?genre=article&issn=0022-1430&volume=51&issue=173&spage=291
http://openurl.ingenta.com/content/xref?genre=article&issn=0022-1430&volume=51&issue=173&spage=291
http://www.igsoc.org/journal/current/207/t11J063.pdf

Part IV

Appendices

53

Appendix A

Namelist options

A.1 config block decomp file prefix

Type: character

Units: unitless

Default Value: graph.info.part.

Possible Values: Any path/prefix to a block decomposition file.

Table A.1: config block decomp file prefix: Defines the prefix for the block decomposition
file. Can include a path. The number of blocks is appended to the end of the
prefix at run-time.

A.2 config calendar type

Type: character

Units: unitless

Default Value: gregorian noleap

Possible Values: ’gregorian’, ’gregorian noleap’

Table A.2: config calendar type: Selection of the type of calendar that should be used in
the simulation.

A.3 config default flowParamA

Type: real

Units: s−1 Pa−n

Default Value: 3.1709792e-24

Possible Values: Any positive real value

54

Table A.3: config default flowParamA: Defines the default value of the flow law parame-
ter A to be used if it is not being calculated from ice temperature. Defaults to
the SI representation of 1.0e-16 yr −1 Pa −3 .

A.4 config do restart

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.4: config do restart: Determines if the initial conditions should be read from a
restart file, or an input file. To perform a restart, simply set this to true in
the namelist.input file and modify the start time to be the time you want
restart from. A restart will read the grid information from the input field, and
the restart state from the restart file. It will perform a run normally, except
velocity will not be solved on a restart.

A.5 config dt

Type: character

Units: unitless

Default Value: 0001-00-00 00:00:00

Possible Values: Any time interval of the format ’YYYY-MM-
DD HH:MM:SS’, but limited by CFL condition. (items in
the format string may be dropped from the left if not needed,
and the components on either side of the underscore may
be replaced with a single integer representing the rightmost
unit)

Table A.5: config dt: Length of model time step defined as a time interval.

A.6 config dynamic thickness

Type: real

Units: m of ice

Default Value: 100.0

55

Possible Values: Any positive real value

Table A.6: config dynamic thickness: Defines the ice thickness below which dynamics are
not calculated.

A.7 config explicit proc decomp

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.7: config explicit proc decomp: Determines if an explicit processor decomposition
should be used. This is only useful if multiple blocks per processor are used.

A.8 config flowLawExponent

Type: real

Units: none

Default Value: 3.0

Possible Values: Any real value

Table A.8: config flowLawExponent: Defines the value of the Glen flow law exponent, n.

A.9 config ice density

Type: real

Units: kg m−3

Default Value: 910.0

Possible Values: Any positive real value

Table A.9: config ice density: ice density to use

A.10 config num halos

56

Type: integer

Units: unitless

Default Value: 3

Possible Values: Any positive interger value.

Table A.10: config num halos: Determines the number of halo cells extending from a
blocks owned cells (Called the 0-Halo). The default of 3 is the minimum that
can be used with monotonic advection.

A.11 config number of blocks

Type: integer

Units: unitless

Default Value: 0

Possible Values: Any integer >= 0.

Table A.11: config number of blocks: Determines the number of blocks a simulation
should be run with. If it is set to 0, the number of blocks is the same as the
number of MPI tasks at run-time.

A.12 config ocean density

Type: real

Units: kg m−3

Default Value: 1028.0

Possible Values: Any positive real value

Table A.12: config ocean density: ocean density to use for calculating floatation

A.13 config pio num iotasks

Type: integer

Units: unitless

Default Value: 0

Possible Values: Any positive integer value greater than or equal to 0.

Table A.13: config pio num iotasks: Integer specifying how many IO tasks should be used
within the PIO library. A value of 0 causes all MPI tasks to also be IO tasks.
IO tasks are required to write contiguous blocks of data to a file.

57

A.14 config pio stride

Type: integer

Units: unitless

Default Value: 1

Possible Values: Any positive integer value greater than 0.

Table A.14: config pio stride: Integer specifying the stride of each IO task.

A.15 config print thickness advection info

Type: logical

Units: unitless

Default Value: .false.

Possible Values: .true. or .false.

Table A.15: config print thickness advection info: Prints additional information about
thickness advection.

A.16 config proc decomp file prefix

Type: character

Units: unitless

Default Value: graph.info.part.

Possible Values: Any path/prefix to a processor decomposition file.

Table A.16: config proc decomp file prefix: Defines the prefix for the processor decompo-
sition file. This file is only read if config explicit proc decomp is .true. The
number of processors is appended to the end of the prefix at run-time.

A.17 config restart timestamp name

Type: character

Units: unitless

Default Value: restart timestamp

58

Possible Values: Path to a file.

Table A.17: config restart timestamp name: Path to the filename for restart timestamps
to be read and written from.

A.18 config run duration

Type: character

Units: unitless

Default Value: none

Possible Values: ’YYYY-MM-DD HH:MM:SS’ or ’none’ (items in the format
string may be dropped from the left if not needed, and the
components on either side of the underscore may be replaced
with a single integer representing the rightmost unit)

Table A.18: config run duration: Timestamp describing the length of the simulation.
If it is set to ’none’ the duration is determined from config start time and
config stop time. config run duration overrides inconsistent values of con-
fig stop time. If a time value is specified for config run duration, it must be
greater than 0.

A.19 config sea level

Type: real

Units: m above datum

Default Value: 0.0

Possible Values: Any real value

Table A.19: config sea level: sea level to use for calculating floatation

A.20 config start time

Type: character

Units: unitless

Default Value: 0000-01-01 00:00:00

59

Possible Values: ’YYYY-MM-DD HH:MM:SS’ (items in the format string
may be dropped from the left if not needed, and the com-
ponents on either side of the underscore may be replaced
with a single integer representing the rightmost unit)

Table A.20: config start time: Timestamp describing the initial time of the simulation. If
it is set to ’file’, the initial time is read from restart timestamp

A.21 config stop time

Type: character

Units: unitless

Default Value: 0000-01-01 00:00:00

Possible Values: ’YYYY-MM-DD HH:MM:SS’ or ’none’ (items in the format
string may be dropped from the left if not needed, and the
components on either side of the underscore may be replaced
with a single integer representing the rightmost unit)

Table A.21: config stop time: Timestamp describing the final time of the simulation. If it
is set to ’none’ the final time is determined from config start time and con-
fig run duration. If config run duration is also specified, it takes precedence
over config stop time. Set config stop time to be equal to config start time
(and config run duration to ’none’) to perform a diagnostic solve only.

A.22 config thickness advection

Type: character

Units: unitless

Default Value: fo

Possible Values: ’fo’, ’none’

Table A.22: config thickness advection: Selection of the method for advecting thickness.

A.23 config time integration

Type: character

Units: unitless

Default Value: forward euler

60

Possible Values: ’forward euler’

Table A.23: config time integration: Time integration method.

A.24 config tracer advection

Type: character

Units: unitless

Default Value: none

Possible Values: ’none’

Table A.24: config tracer advection: Selection of the method for advecting tracers.

A.25 config velocity solver

Type: character

Units: unitless

Default Value: sia

Possible Values: ’sia’

Table A.25: config velocity solver: Selection of the method for solving ice velocity.

A.26 config write output on startup

Type: logical

Units: unitless

Default Value: .true.

Possible Values: .true. or .false.

Table A.26: config write output on startup: Logical flag determining if an output file
should be written prior to the first time step.

A.27 config year digits

Type: integer

61

Units: unitless

Default Value: 4

Possible Values: Any positive integer value greater than 0.

Table A.27: config year digits: Integer specifying the number of digits used to represent
the year in time strings.

62

Appendix B

Variable definitions

B.1 mesh

B.1.1 angleEdge

Type: real

Units: radians

Dimension: nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’angleEdge’ in ’mesh’ pool

Table B.1: angleEdge: Angle the edge normal makes with local eastward direction.

B.1.2 areaCell

Type: real

Units: m2

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’areaCell’ in ’mesh’ pool

Table B.2: areaCell: Area of each cell in the primary grid.

B.1.3 areaTriangle

Type: real

63

Units: m2

Dimension: nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’areaTriangle’ in ’mesh’ pool

Table B.3: areaTriangle: Area of each cell (triangle) in the dual grid.

B.1.4 bedTopography

Type: real

Units: m above datum

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: input restart

Pool path: ’bedTopography’ in ’mesh’ pool

Table B.4: bedTopography: Elevation of ice sheet bed. Once isostasy is added to the
model, this should become a state variable.

B.1.5 cellTangentPlane

Type: real

Units: unitless

Dimension: R3 TWO nCells

Persistence: persistent

Number of time levels: 1

Pool path: ’cellTangentPlane’ in ’mesh’ pool

Table B.5: cellTangentPlane: The two vectors that define a tangent plane at a cell center.

B.1.6 cellsOnCell

Type: integer

Units: unitless

Dimension: maxEdges nCells

Persistence: persistent

Number of time levels: 1

64

In streams: basicmesh

Pool path: ’cellsOnCell’ in ’mesh’ pool

Table B.6: cellsOnCell: List of cells that neighbor each cell.

B.1.7 cellsOnEdge

Type: integer

Units: unitless

Dimension: TWO nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’cellsOnEdge’ in ’mesh’ pool

Table B.7: cellsOnEdge: List of cells that straddle each edge.

B.1.8 cellsOnVertex

Type: integer

Units: unitless

Dimension: vertexDegree nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’cellsOnVertex’ in ’mesh’ pool

Table B.8: cellsOnVertex: List of cells that share a vertex.

B.1.9 coeffs reconstruct

Type: real

Units: unitless

Dimension: R3 maxEdges nCells

Persistence: persistent

Number of time levels: 1

Pool path: ’coeffs reconstruct’ in ’mesh’ pool

Table B.9: coeffs reconstruct: Coefficients to reconstruct velocity vectors at cells centers.

65

B.1.10 dcEdge

Type: real

Units: m

Dimension: nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’dcEdge’ in ’mesh’ pool

Table B.10: dcEdge: Length of each edge, computed as the distance between cell-
sOnEdge.

B.1.11 dvEdge

Type: real

Units: m

Dimension: nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’dvEdge’ in ’mesh’ pool

Table B.11: dvEdge: Length of each edge, computed as the distance between ver-
ticesOnEdge.

B.1.12 edgeNormalVectors

Type: real

Units: unitless

Dimension: R3 nEdges

Persistence: persistent

Number of time levels: 1

Pool path: ’edgeNormalVectors’ in ’mesh’ pool

Table B.12: edgeNormalVectors: Normal vector defined at an edge.

B.1.13 edgeSignOnCell

66

Type: integer

Units: unitless

Dimension: maxEdges nCells

Persistence: persistent

Number of time levels: 1

Pool path: ’edgeSignOnCell’ in ’mesh’ pool

Table B.13: edgeSignOnCell: Sign of edge contributions to a cell for each edge on cell.
Used for bit-reproducible loops. Represents directionality of vector connect-
ing cells.

B.1.14 edgeSignOnVertex

Type: integer

Units: unitless

Dimension: maxEdges nVertices

Persistence: persistent

Number of time levels: 1

Pool path: ’edgeSignOnVertex’ in ’mesh’ pool

Table B.14: edgeSignOnVertex: Sign of edge contributions to a vertex for each edge on
vertex. Used for bit-reproducible loops. Represents directionality of vector
connecting vertices.

B.1.15 edgesOnCell

Type: integer

Units: unitless

Dimension: maxEdges nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’edgesOnCell’ in ’mesh’ pool

Table B.15: edgesOnCell: List of edges that border each cell.

B.1.16 edgesOnEdge

Type: integer

Units: unitless

67

Dimension: maxEdges2 nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’edgesOnEdge’ in ’mesh’ pool

Table B.16: edgesOnEdge: List of edges that border each of the cells that straddle each
edge.

B.1.17 edgesOnVertex

Type: integer

Units: unitless

Dimension: vertexDegree nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’edgesOnVertex’ in ’mesh’ pool

Table B.17: edgesOnVertex: List of edges that share a vertex as an endpoint.

B.1.18 indexToCellID

Type: integer

Units: unitless

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’indexToCellID’ in ’mesh’ pool

Table B.18: indexToCellID: List of global cell IDs.

B.1.19 indexToEdgeID

Type: integer

Units: unitless

Dimension: nEdges

Persistence: persistent

Number of time levels: 1

68

In streams: basicmesh

Pool path: ’indexToEdgeID’ in ’mesh’ pool

Table B.19: indexToEdgeID: List of global edge IDs.

B.1.20 indexToVertexID

Type: integer

Units: unitless

Dimension: nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’indexToVertexID’ in ’mesh’ pool

Table B.20: indexToVertexID: List of global vertex IDs.

B.1.21 kiteAreasOnVertex

Type: real

Units: m2

Dimension: vertexDegree nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’kiteAreasOnVertex’ in ’mesh’ pool

Table B.21: kiteAreasOnVertex: Area of the portions of each dual cell that are part of
each cellsOnVertex.

B.1.22 latCell

Type: real

Units: radians

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’latCell’ in ’mesh’ pool

Table B.22: latCell: Latitude location of cell centers in radians.

69

B.1.23 latEdge

Type: real

Units: radians

Dimension: nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’latEdge’ in ’mesh’ pool

Table B.23: latEdge: Latitude location of edge midpoints in radians.

B.1.24 latVertex

Type: real

Units: radians

Dimension: nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’latVertex’ in ’mesh’ pool

Table B.24: latVertex: Latitude location of vertices in radians.

B.1.25 layerCenterSigma

Type: real

Units: none

Dimension: nVertLevels

Persistence: persistent

Number of time levels: 1

Pool path: ’layerCenterSigma’ in ’mesh’ pool

Table B.25: layerCenterSigma: Sigma (fractional) level at center of each layer

B.1.26 layerInterfaceSigma

Type: real

70

Units: none

Dimension: nVertLevelsP1

Persistence: persistent

Number of time levels: 1

Pool path: ’layerInterfaceSigma’ in ’mesh’ pool

Table B.26: layerInterfaceSigma: Sigma (fractional) level at interface between each layer
(including top and bottom)

B.1.27 layerThicknessFractions

Type: real

Units: none

Dimension: nVertLevels

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’layerThicknessFractions’ in ’mesh’ pool

Table B.27: layerThicknessFractions: Fractional thickness of each sigma layer

B.1.28 localVerticalUnitVectors

Type: real

Units: unitless

Dimension: R3 nCells

Persistence: persistent

Number of time levels: 1

Pool path: ’localVerticalUnitVectors’ in ’mesh’ pool

Table B.28: localVerticalUnitVectors: Unit surface normal vectors defined at cell centers.

B.1.29 lonCell

Type: real

Units: radians

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

71

Pool path: ’lonCell’ in ’mesh’ pool

Table B.29: lonCell: Longitude location of cell centers in radians.

B.1.30 lonEdge

Type: real

Units: radians

Dimension: nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’lonEdge’ in ’mesh’ pool

Table B.30: lonEdge: Longitude location of edge midpoints in radians.

B.1.31 lonVertex

Type: real

Units: radians

Dimension: nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’lonVertex’ in ’mesh’ pool

Table B.31: lonVertex: Longitude location of vertices in radians.

B.1.32 nEdgesOnCell

Type: integer

Units: unitless

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’nEdgesOnCell’ in ’mesh’ pool

Table B.32: nEdgesOnCell: Number of edges that border each cell.

72

B.1.33 nEdgesOnEdge

Type: integer

Units: unitless

Dimension: nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’nEdgesOnEdge’ in ’mesh’ pool

Table B.33: nEdgesOnEdge: Number of edges that surround each of the cells that strad-
dle each edge. These edges are used to reconstruct the tangential velocities.

B.1.34 sfcMassBal

Type: real

Units: kg m2 s−1

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: input restart

Pool path: ’sfcMassBal’ in ’mesh’ pool

Table B.34: sfcMassBal: Surface mass balance

B.1.35 verticesOnCell

Type: integer

Units: unitless

Dimension: maxEdges nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’verticesOnCell’ in ’mesh’ pool

Table B.35: verticesOnCell: List of vertices that border each cell.

B.1.36 verticesOnEdge

73

Type: integer

Units: unitless

Dimension: TWO nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’verticesOnEdge’ in ’mesh’ pool

Table B.36: verticesOnEdge: List of vertices that straddle each edge.

B.1.37 weightsOnEdge

Type: real

Units: unitless

Dimension: maxEdges2 nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’weightsOnEdge’ in ’mesh’ pool

Table B.37: weightsOnEdge: Reconstruction weights associated with each of the
edgesOnEdge.

B.1.38 xCell

Type: real

Units: unitless

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’xCell’ in ’mesh’ pool

Table B.38: xCell: X Coordinate in cartesian space of cell centers.

B.1.39 xEdge

Type: real

Units: unitless

Dimension: nEdges

74

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’xEdge’ in ’mesh’ pool

Table B.39: xEdge: X Coordinate in cartesian space of edge midpoints.

B.1.40 xVertex

Type: real

Units: unitless

Dimension: nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’xVertex’ in ’mesh’ pool

Table B.40: xVertex: X Coordinate in cartesian space of vertices.

B.1.41 yCell

Type: real

Units: unitless

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’yCell’ in ’mesh’ pool

Table B.41: yCell: Y Coordinate in cartesian space of cell centers.

B.1.42 yEdge

Type: real

Units: unitless

Dimension: nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’yEdge’ in ’mesh’ pool

75

Table B.42: yEdge: Y Coordinate in cartesian space of edge midpoints.

B.1.43 yVertex

Type: real

Units: unitless

Dimension: nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’yVertex’ in ’mesh’ pool

Table B.43: yVertex: Y Coordinate in cartesian space of vertices.

B.1.44 zCell

Type: real

Units: unitless

Dimension: nCells

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’zCell’ in ’mesh’ pool

Table B.44: zCell: Z Coordinate in cartesian space of cell centers.

B.1.45 zEdge

Type: real

Units: unitless

Dimension: nEdges

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’zEdge’ in ’mesh’ pool

Table B.45: zEdge: Z Coordinate in cartesian space of edge midpoints.

76

B.1.46 zVertex

Type: real

Units: unitless

Dimension: nVertices

Persistence: persistent

Number of time levels: 1

In streams: basicmesh

Pool path: ’zVertex’ in ’mesh’ pool

Table B.46: zVertex: Z Coordinate in cartesian space of vertices.

B.2 state

B.2.1 cellMask

Type: integer

Units: none

Dimension: nCells Time

Persistence: persistent

Number of time levels: 2

In streams: restart output

Pool path: ’cellMask’ in ’state’ pool

Table B.47: cellMask: bitmask indicating various properties about the ice sheet on cells.
cellMask only needs to be a restart field if config allow additional advance =
false (to keep the mask of initial ice extent)

B.2.2 edgeMask

Type: integer

Units: none

Dimension: nEdges Time

Persistence: persistent

Number of time levels: 2

In streams: output

Pool path: ’edgeMask’ in ’state’ pool

Table B.48: edgeMask: bitmask indicating various properties about the ice sheet on
edges.

77

B.2.3 layerThickness

Type: real

Units: m

Dimension: nVertLevels nCells Time

Persistence: persistent

Number of time levels: 2

In streams: output

Pool path: ’layerThickness’ in ’state’ pool

Table B.49: layerThickness: layer thickness

B.2.4 layerThicknessEdge

Type: real

Units: m

Dimension: nVertLevels nEdges Time

Persistence: persistent

Number of time levels: 2

Pool path: ’layerThicknessEdge’ in ’state’ pool

Table B.50: layerThicknessEdge: layer thickness on cell edges

B.2.5 lowerSurface

Type: real

Units: m above datum

Dimension: nCells Time

Persistence: persistent

Number of time levels: 2

In streams: output

Pool path: ’lowerSurface’ in ’state’ pool

Table B.51: lowerSurface: elevation at bottom of ice

B.2.6 normalVelocity

Type: real

Units: m s−1

Dimension: nVertLevels nEdges Time

78

Persistence: persistent

Number of time levels: 2

In streams: input restart output

Pool path: ’normalVelocity’ in ’state’ pool

Table B.52: normalVelocity: horizonal velocity, normal component to an edge

B.2.7 temperature

Type: real

Units: degrees Celsius

Dimension: nVertLevels nCells Time

Persistence: persistent

Number of time levels: 2

Index in temperature Array: ’temperature’ in ’state’ pool

Pool path: ’tracers’ in ’state’ pool

Array Group: dynamics

Table B.53: temperature: ice temperature

B.2.8 thickness

Type: real

Units: m

Dimension: nCells Time

Persistence: persistent

Number of time levels: 2

In streams: input restart output

Pool path: ’thickness’ in ’state’ pool

Table B.54: thickness: ice thickness

B.2.9 uReconstructMeridional

Type: real

Units: m s−1

Dimension: nVertLevels nCells Time

Persistence: persistent

Number of time levels: 2

In streams: output

79

Pool path: ’uReconstructMeridional’ in ’state’ pool

Table B.55: uReconstructMeridional: meridional velocity reconstructed on cell centers

B.2.10 uReconstructX

Type: real

Units: m s−1

Dimension: nVertLevels nCells Time

Persistence: persistent

Number of time levels: 2

In streams: output

Pool path: ’uReconstructX’ in ’state’ pool

Table B.56: uReconstructX: x-component of velocity reconstructed on cell centers

B.2.11 uReconstructY

Type: real

Units: m s−1

Dimension: nVertLevels nCells Time

Persistence: persistent

Number of time levels: 2

In streams: output

Pool path: ’uReconstructY’ in ’state’ pool

Table B.57: uReconstructY: y-component of velocity reconstructed on cell centers

B.2.12 uReconstructZ

Type: real

Units: m s−1

Dimension: nVertLevels nCells Time

Persistence: persistent

Number of time levels: 2

In streams: output

Pool path: ’uReconstructZ’ in ’state’ pool

Table B.58: uReconstructZ: z-component of velocity reconstructed on cell centers

80

B.2.13 uReconstructZonal

Type: real

Units: m s−1

Dimension: nVertLevels nCells Time

Persistence: persistent

Number of time levels: 2

In streams: output

Pool path: ’uReconstructZonal’ in ’state’ pool

Table B.59: uReconstructZonal: zonal velocity reconstructed on cell centers

B.2.14 upperSurface

Type: real

Units: m above datum

Dimension: nCells Time

Persistence: persistent

Number of time levels: 2

In streams: output

Pool path: ’upperSurface’ in ’state’ pool

Table B.60: upperSurface: elevation at top of ice

B.2.15 upperSurfaceVertex

Type: real

Units: m above datum

Dimension: nVertices Time

Persistence: persistent

Number of time levels: 2

Pool path: ’upperSurfaceVertex’ in ’state’ pool

Table B.61: upperSurfaceVertex: elevation at top of ice on vertices (currently only needed
by shallow ice solver)

B.2.16 vertexMask

81

Type: integer

Units: none

Dimension: nVertices Time

Persistence: persistent

Number of time levels: 2

In streams: output

Pool path: ’vertexMask’ in ’state’ pool

Table B.62: vertexMask: bitmask indicating various properties about the ice sheet on ver-
tices.

B.2.17 xtime

Type: text

Units: unitless

Dimension: Time

Persistence: persistent

Number of time levels: 1

In streams: restart output

Pool path: ’xtime’ in ’state’ pool

Table B.63: xtime: model time, with format ’YYYY-MM-DD HH:MM:SS’

B.3 tend

B.3.1 tend layerThickness

Type: real

Units: m s−1

Dimension: nVertLevels nCells Time

Persistence: persistent

Number of time levels: 1

Pool path: ’tend layerThickness’ in ’tend’ pool

Table B.64: tend layerThickness: time tendency of layer thickness

B.3.2 tend temperature

Type: real

82

Units: K s−1

Dimension: nVertLevels nCells Time

Persistence: persistent

Number of time levels: 1

Index in tend temperature Ar-
ray:

’tend temperature’ in ’tend’ pool

Pool path: ’tendTracers’ in ’tend’ pool

Array Group: dynamics

Table B.65: tend temperature: time tendency of ice temperature

83

	MPAS-Land Ice Quick Start Guide
	I The MPAS Framework
	Building MPAS
	Prequisites
	Compiling I/O Libraries
	netCDF
	parallel-netCDF
	PIO

	Compiling MPAS
	Cleaning
	Graph partitioning with METIS

	Grid Description
	Configuring Model Input and Output
	XML stream configuration files
	Optional stream attributes
	Stream definition examples
	Example: a single-precision output stream with one month of data per file
	Example: appending records to existing output files
	Example: referencing filename intervals to a time other than the start time

	Visualization
	ParaView

	II MPAS-Land Ice
	Governing Equations
	Momentum Balance
	Time Integration
	Advection

	Model Configuration
	Dimensions
	Namelist options
	velocity_solver
	advection
	physical_parameters
	time_integration
	time_management
	io
	decomposition
	debug

	Variable definitions
	state
	tend
	mesh

	Run-time input/output streams
	input
	output
	restart
	basicmesh
	Other streams

	Land Ice Visualization
	Python

	Test Cases
	Halfar Dome
	Provided Files
	Results

	EISMINT-1 Test Cases
	Provided Files
	Results

	Real World Test Cases

	Global Statistics
	Running MPAS-Land Ice within a coupled climate model
	Troubleshooting
	Choice of time step

	Known Issues

	III Bibliography
	IV Appendices
	Namelist options
	config_block_decomp_file_prefix
	config_calendar_type
	config_default_flowParamA
	config_do_restart
	config_dt
	config_dynamic_thickness
	config_explicit_proc_decomp
	config_flowLawExponent
	config_ice_density
	config_num_halos
	config_number_of_blocks
	config_ocean_density
	config_pio_num_iotasks
	config_pio_stride
	config_print_thickness_advection_info
	config_proc_decomp_file_prefix
	config_restart_timestamp_name
	config_run_duration
	config_sea_level
	config_start_time
	config_stop_time
	config_thickness_advection
	config_time_integration
	config_tracer_advection
	config_velocity_solver
	config_write_output_on_startup
	config_year_digits

	Variable definitions
	mesh
	angleEdge
	areaCell
	areaTriangle
	bedTopography
	cellTangentPlane
	cellsOnCell
	cellsOnEdge
	cellsOnVertex
	coeffs_reconstruct
	dcEdge
	dvEdge
	edgeNormalVectors
	edgeSignOnCell
	edgeSignOnVertex
	edgesOnCell
	edgesOnEdge
	edgesOnVertex
	indexToCellID
	indexToEdgeID
	indexToVertexID
	kiteAreasOnVertex
	latCell
	latEdge
	latVertex
	layerCenterSigma
	layerInterfaceSigma
	layerThicknessFractions
	localVerticalUnitVectors
	lonCell
	lonEdge
	lonVertex
	nEdgesOnCell
	nEdgesOnEdge
	sfcMassBal
	verticesOnCell
	verticesOnEdge
	weightsOnEdge
	xCell
	xEdge
	xVertex
	yCell
	yEdge
	yVertex
	zCell
	zEdge
	zVertex

	state
	cellMask
	edgeMask
	layerThickness
	layerThicknessEdge
	lowerSurface
	normalVelocity
	temperature
	thickness
	uReconstructMeridional
	uReconstructX
	uReconstructY
	uReconstructZ
	uReconstructZonal
	upperSurface
	upperSurfaceVertex
	vertexMask
	xtime

	tend
	tend_layerThickness
	tend_temperature

